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• Many machine learning algorithms rely on distance metrics. 

For example, kNN 

• DML improves the performance of the algorithms 

• Each  DML method has its pros. and cons.  

• Therefore, we aimed to find out the most proper DML 

method for face recognition 

 

Motivation 
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Contributions 

• Review  the state-of –the-art DML methods 

• Empirically find out the most suitable DML method for 

face recognition 

• Review the incremental learning methods 
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What is Face Recognition? 

4 http://images.slideplayer.com/16/4978543/slides/slide_6.jpg 



What is Face Recognition? 

• Face recognition steps: 

4 https://www.mathworks.com/cmsimages/98565_wm_face-recognition.jpg 



What is Distance Metric Learning? 

• How to measure the distance between two vectors? 

– often measured using the Euclidean distance.  

• Goal of distance metric learning:  

– to identify an appropriate distance metric that brings “similar” 

objects close together while separating “dissimilar” objects.  

• Distance satisfies :  

– non-negativity, identity, symmetry, triangle inequality  

• Recent researches have shown that  

– using a more appropriate distance metric can improve the 

performances significantly.  
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Formulation of DML 

– We formulate squared Euclidean distance function (d) 

between the two vectors: 

 

– Let covariance matrix is  

 

– , where  μ is mean vector. Then original Mahalanobis 

distance function (dM) become as follow: 

 

– In general, the distance function is: 

 

where A is a positive semi-definite (PSD) matrix (d x d).  
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Another view of DML 

• If A is not PSD, then dA could be negative. 

• In practical, the set of PSD matrices is a convex set. 

• It can view as the squared Euclidean distance after applying 

a linear transformation.   

• Decompose A = GTG via we have 
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Categorization of DML 

• Depending on the availability of the training examples, 

DML algorithms can be divided into two categories:  

– supervised DML 

– unsupervised DML 
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Supervised DML methods 

• The supervised DML methods use labels information of 

data and they are divided into 2 categories:  

– Local 

– Global  

• The global DML methods try to satisfy all the constraints 

simultaneously. They keep all the data points the same 

classes close, while separating all the data points from 

different classes.  

• The local DML methods try to satisfy the constraints in a 

local region around each data point instead of all pairwise 

constraints. 
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Unsupervised DML methods 

Unsupervised DML (manifold learning) 

• learns an underlying low-dimensional manifold where 

geometric relationships (e.g. distance) between most of the 

observed data are preserved.  

• Popular methods: 

– PCA, MDS, LLE, Isomap and so forth. 
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State-of-the-art DML methods 

• Principal Component Analysis (PCA) 

– Euclidean distance 

– Mahalanobis distance 

• Neighborhood Component Analysis (NCA) 

– https://papers.nips.cc/paper/2566-neighbourhood-components-

analysis.pdf 

• The Large Margin Nearest Neighbor (LMNN) 

– http://jmlr.csail.mit.edu/papers/volume10/weinberger09a/weinberger09

a.pdf 

– http://www.cs.cornell.edu/~kilian/code/lmnn/lmnn.html 

• Energy Classifier 

– http://yann.lecun.com/exdb/publis/pdf/lecun-icdar-keynote-07.pdf 
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Principal Component Analysis 

• An unsupervised, global and linear DML 

• Learn transformation matrix by maximizing the variance 

• Also useful for dimension reduction 
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Neighborhood Component 

Analysis 

• A supervised, local and linear DML method that learns a 

Mahalanobis distance metric for KNN by maximizing the 

leave-one-out cross validation.  

 The probability of classifying xi correctly,   

 weighted counting involving pairwise distance  

 

 

  

 The expected number of correctly classification points: 
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Large Margin Nearest Neighbors 

• A supervised, local and linear DML method that learns the 

Mahalanobis distance metric to maximize the margin 

between the classes for KNN classifier 
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Energy classifier 

• Energy classifier learns a function that maps input patterns 

into a target space using L1 norm, based on the pairs of the 

faces of same or different persons.  
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Incremental DML methods 

Why is incremental DML method needed? 

• Real applications, constraints are only available 

incrementally, thus necessitating methods that can perform 

online updates to the learned metric.  

• Small sample size problem 

• Memory and time complexity 

 

What is problem? 

• How to update the distance metric (transformation matrix) 
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Recent status of Incremental 

Learning 

Some incremental versions of DML: 

– PCA => IPCA 

– SVD => R-SVD 

– NCA =>  no incremental version 

– LMNN => no incremental version 
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Experimental Results 
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Face Recognition process 

• General scheme 

Databases / ORL, 

Yale B, PIE  
DML methods / EucPCA, 

MahaLMNN, MahaNCA, 

MahaPCA, Energy  

Input images 
PCA used for Feature 

Extractor (Dimension 

reduction) 

Classification / kNN with 

DML methods 
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Face Recognition 

• Problems 

– Pose, Illumination, Expression, Occlusion, 

aging and so on. 
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Face Database 

• Tested databases: ORL, PIE and Yale B 

 

Database 
# of 

classes 
Variations 

Image 

size 

Used 

dimension 

# of 

training 

images 

# of test 

images 

ORL 40 Various 112x92 35 280 120 

PIE 15 

Pose, 

Illumination, 

Exp 

50x50 35 1260 522 

Yale B 38 
Pose, 

Illumination 
54x54 35 956 412 
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Comparison in same dimension 

Result ordered by recognition rates:  

  MahaPCA >  MahaNCA  >  Energy ≈ MahaLMNN  > EucPCA  

DML methods error rates on 25 dimensions
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Comparison of the best 

performances 

Methods ORL (dim) PIE (dim) Yale B (dim) 

EucPCA 6,58±2,09 (30) 29.31±15.54(30) 53,24±5,67 (30) 

MahaLMNN 3,08±1,24 (30) 23.74±11.86(30) 41,57±17,73 (30) 

MahaNCA 4,41±2,43 (10) 26.15±10.45(30) 23,59±9,79 (20) 

MahaPCA 6,25±1,67 (20) 16.48±7.82(30) 28,83±7,24 (20) 

Energy 3,08±1,11 (30) 26.64±11.47(30) 40,99±17,68 (30) 

Result ordered by recognition rates:  

    MahaNCA >MahaPCA > MahaLMNN  ≈  Energy > EucPCA 
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Comparison of the best 

performances 
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Unsupervised DML results 

Projection result of 2-people (Yale B database) 

24 



Unsupervised DML results 

Projection result of 10-people (Yale B database) 
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Conclusions and discussions 

• Mahalanobis based PCA is still competitive in face 

recognition on our used databases. 

• LLE and Isomap are projected the data more separable, and 

LLE and PCA were the fastest.   

• Categorized the incremental DML methods into 4 categories 

according to their updating methods.  

• Our future work is to design incremental DML for face 

recognition. For example, to decide updating rule for 

transformation matrix for incremental NCA and Incremental 

LMNN. 
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Thanks for your attention 

  


